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SPARSE REDUCES CONJUNCTIVELY TO TALLY*
HARRY BUHRMANT', EDITH HEMASPAANDRA!, AND LUC LONGPRE!

Abstract. Polynomials over finite fields are used to show that any sparse set can conjunctively reduce to a tally
set. This leads to new results and to simple proofs of known results about various classes that lie between P and
P/poly.
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1. Introduction. Sparse sets and tally sets have been the subject of much recent research
in structural complexity theory. A thorough survey of results on this topic can be found in
[HOW92].

Sparse sets are closely linked to nonuniform complexity classes and circuit complexity.
It is well known that sets Turing reducible to sparse sets are those sets that have polynomial
size circuits, which is also the same as the advice class P/poly, the class of sets solvable with
polynomial size advice. Since sparse sets can be encoded easily as tally sets, this is also the
same as the class of sets Turing reducible to tally sets.

For a reduction <f and a class of sets C, let R,(C) be the class of all sets that are <?-
reducible to a set in C. In this terminology, P/poly = Ry (SPARSE) = Ry (TALLY). There is
an interesting structure of sets lying between P and P/poly that can be defined by changing
the Turing reductions to weaker reductions, and/or by considering tally sets instead of sparse
sets.

The study of the R,(SPARSE) and R,(TALLY) classes, for various reductions r, was
initiated by Book and Ko in [BK88]. A more extensive study of these classes can be found in
[Ko89], [AHOW92], and [AHH193]. Our main result refutes one of Ko’s conjectures [Ko89]
by showing that every sparse set is conjunctive truth-table reducible to a tally set as follows:

SPARSE <€ R (TALLY).
R.::(SPARSE) = R, (TALLY).

The reduction uses polynomials over finite fields to encode any sparse set into a tally set
in such a way that a polynomial-time algorithm can compute membership in the sparse set
using a conjunctive truth-table query. This encoding method itself found more applications.
Recently, it has been used to show an upward separation for FewP [RRW94]. The more classic
encoding method did not seem to work there. It has also been used to handle bottlenecks in
neural networks [Wat].

Our result is surprising since it is false for disjunctive truth-table reductions [Ko89]—
SPARSE ¢ R, (TALLY)—and since it was believed to be false by those who looked at the
problem. One way to interpret the result is as follows. It is easy to see that one can encode a
sparse set into a tally set. But can it be encoded in such a way that all the information about
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the sparse set can be retrieved with a conjunctive truth-table? With a disjunctive truth-table?
The answers are yes and no, respectively.

The results allow us to derive corollaries that either settle other open problems or provide
simple proofs of previously known results. For example, as a derived result, we refuse another
conjecture of Ko by showing

Rpa: (SPARSE) € R, (SPARSE).

These two results and the following result by Gavalda and Watanabe settle all the remaining
open problems from [Ko89]. We end this section by looking at positive truth-table reductions
[Sel82] (5},’,,) to sparse and tally sets. In particular, we show that pt: reductions to tally sets
capture the class R, (TALLY):

Ry (TALLY) = R, (TALLY),
and thus
R, (SPARSE) = R;,(SPARSE).

In [GW93], Gavalda and Watanabe use a technique based on Kolmogorov complexity to
prove the conjecture of Ko that R, (SPARSE) ;t_ R4, (SPARSE). Their construction actually
provides something stronger. If f(n) is an unbounded function from integers to integers, such
that f(n) is computable in time polynomial in n, then their construction provides a set that
is not </,,-reducible to any sparse set but is <P ,-reducible to a sparse set using only f(r)
queries on inputs of lengthn: Ry(ny-ce: (SPARSE) € Ry, (SPARSE), for any polynomial-time-
computable unbounded function f. By improving their technique, we are able to make the
set reducible to a tally set. For any polynomial-time-computable unbounded function f,

Rfy-ct (TALLY) & Ry, (SPARSE).

Combining this with our main result allows us to strengthen one of Ko’s results and show that
for any polynomial-time-computable unbounded function f,

R (y-det (TALLY) ¢ R (SPARSE).

This is optimal in some sense and reveals the following picture: Ry, (SPARSE) is included
in R.;(SPARSE) (this paper) and Rp.,,(SPARSE) is included in R, (SPARSE) [K089]. On
the other hand, for any unbounded f, the classes Ry (u)-ur: (SPARSE) and Rf(n)-c::(SPARSE)
are incomparable.

From out main result, we can easily obtain further new results. For example, we show
that various classes are not closed under complementation. We also obtain results that were
previously known, almost directly from our main result. A typical line of reasoning is as
follows: if a set is <%, -reducible to a sparse set, then it is <%,-reducible to a tally set by our
result and thus its complement is </, -reducible to a tally set. This complementation argument
can be applied only for tally sets.

2. Preliminaries.

2.1. Notation. Let T = {0, 1}. Strings are elements of £* and are denoted by lowercase
letters x, y, u, v, ... . For any string x the length of a string is denoted by |x|. Subsets of
T* are denoted by capital letters A, B, C, S, ... . The set £* — A is denoted by A. For a
set A we use A="(A=") to denote the subset of A consisting of all strings of length n(< n).
For any set A the cardinality of A is denoted by || A||. If for all n, [|A="|| < d(n), we say that
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A is of density d(n). We call a set S sparse if there exists a polynomial p such that for all
n, | S| < p(n). Aset T is called tally if T S {0}*. We fix a pairing function Axy.(x, y)
computable in polynomial time from £* x £* to £*. Without loss of generality we assume
that for all x, y : |x| + [¥| < [{x, y}| < 2(Jx| + |y]). We assume that the reader is familiar
with the standard Turing machine model.

2.2. Truth tables. The ordered pair {{a;, ..., a), &), for k > 0, is called a truth-table
condition of norm k is {(ay, ..., ax) is a k-tuple of strings and « is a k-ary Boolean function
[LLS75]. The set {ay, ..., ax} is called the associated set of the tt-condition. A function f
is a truth-table function if f is total and f(x) is a truth-table condition for every x in £*. We
denote the associated set of f(x) by Ass(f (x)). If, for all x, f(x) has norm less than or equal
to k then f is called a k-truth-table (kt¢) function. We say that a 1z function f is a disjunctive
(conjunctive) truth-table (dtt (ctt)) function if f is a truth-table condition whose Boolean
function is always a disjunction (conjunction) of its arguments

2.3. Reductions, reducibilities. Let A;, A, € X*. In this paper, all reductions are
polynomial-time computable. We say that

1. A, is truth-table reducible to A, (<l -reducible) iff there exists a polynomial-time
computable ¢ function f such that x € Ay iff a(xa,(a1), ..., Xa,(ar)) = true, where f(x)
is ((ai, ...,ar), @) and x4, is the characteristic function of the set Az

2. Al is k-truth-table reducible to A, (_k n-redumble) iff Ay <5, P A, by some ktt func-
tion. A; is bounded-truth-table reducible to A; (< bn-redumble) iff A} < _k . A2 for some
integer k.

3. A, is disjunctive (conjunctive) truth-table reducible ( ot (<P ,)-reducible) to A, iff
Ay <l A, by some dtt (ctt) function. For k > 0, A, is k-disjunctive (conjunctive) truth-table
reducible (_k_d” (_k_m)) to A, if A <) P Ay by some dtt (ctt) function of norm k.

4. Ay is disjunctive (conjunctive) truth-table reducible (<p,,, (<5.,,)-reducible) to A iff
ALZE e (_k ) A2 for some integer k.

5. A is positive truth-table reducible to A; (_p,,-reducible) [Se182] iff A} <b, A, by
some t¢ function f such that for all sets X, X5, ¥y, and Y», if X| </, X, via f, X; € Y, and
Y < <u Yz via f then X, C Y;.

We will consider languages that are reducible to sparse and tally sets. Let r be any of the
above reductions. Then

SPARSE = {S| Sis a sparse set},
co-SPARSE = {S| S s a sparse set},
TALLY = {T | T is atally set},
R,(SPARSE) = {A | A<’ S for some S € SPARSE]},
R.(TALLY) = {A | A<P T for some T € TALLY}.

2.4. Kolmogorov complexity. The Kolmogorov complexity of a string x, K (x), is the
size of the smallest index of a Turing machine that generates x and halts. A Kolmogorov

random string is a string x such that K(x) > |x|. For a more detailed description see, for
example, [LV93].

3. Conjunctive reductions to tally sets.

THEOREM 1. SPARSE C R.;;(TALLY).

Proof. Let S be a sparse set and let d(n) a polynomial upper bound on its density, where
d is a polynomial-time-computable function. Such a function d exists for every sparse set.
We show that § € R, (TALLY).

We have to build a </, reduction g from Sto atally set T. We can ensure that Ass(g(x))N
Ass(g(y)) = @ for |x| # |y| by building g such that every element of Ass(g(x)) is of the
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form 0"/}, where n is the length of x. In the following, let xi, ..., x2» be the 2" strings of
length n. Note that if g isa reduction from Sto T,then x; € § & Ass(g(x;)) € T. Since
this property holds for all x;, a <[, reduction generates a family of 2" tally sets such that for
all x; ¢ S, Ass(g(x;)) € Ux s Ass(g(x;)). Whether the reduction is possible depends on
whether we can efficiently construct such a family of sets. The existence of these kinds of
families has been studied in [EFF82], [EFF85], [NW88]. We will construct a family of sets
F ={0y, ..., @}, with the following properties:

1. Q; e TALLY,
2. Q; can be generated in polynomial time (in ),
3. For any d(n) + 1sets Q. ..., Qiy» Ok € F such that k ¢ {iy, ..., ium}h Ok €
Uq(nl) Q
= UN

If we set the tally set T = UX s Qi thenx; € Siff O; C T, since § is of density dn). If
we are able to generate Q; in polynomial time (in n), then we can define the <%, reduction f
from S=" to T by Ass(f(x;)) = Q;. First we show by the next lemma that property 3 above

follows from the following stronger property, which is easier to verify.

LEMMA 1. Let F = {Q, . .., Q) be a family of sets such that for some r > 0, || Q;|| >
r-d(n)and |Qi () Qjll < r fori # j. Then, for any d(n) + 1 sets Q;,, ..., Qiyyr Qk € F
such thatk ¢ (i1, ..., iaw} Qe € Uiy Qs

Proof. Suppose this is not true, i.e., there exist d(n) + 1 sets Q;,,..., Qi O € F

such thatk ¢ {i},...,izm} and Qx C Ud(”) Q;;. Since || Qkll > r -d(n), there must exist a
jsuchthatl < j < d(n) and || QN Q,J || > r. But this contradicts the fact that the size of
the intersection of any two different sets is at most r. 0

One way to construct these families is as follows. Let GF(p) be a finite field with a prime
number of elements. Note here that we can always find a prime between x and 2x [Che52].

We consider polynomials over G F(p) for p prime. We need an easy fact about roots of
polynomials over finite fields. For more detail see §6.6 in [Coh74].

FACT 1. Two different polynomials of degree < r cannot intersect on more than r points
in GF(p).

We represent a polynomial of degree < r by its r + 1 coefficients. We view each
polynomial as a (r + 1)-digit number in base p. With the ith polynomial, denoted by g;, we
mean the polynomial whose representation is the number base p that represents i. Consider
the following family of sets: Q; = {0™29@} g € GF(p)}. We will choose r and p such
that the conditions of Lemma 1 are fulfilled. Observe that Q; is a tally set of size p, and that
for two different polynomials ¢; and g;, || Q; |J Q;ll < r. It remains to force the following
requirements:

1. p"*1 > 2" (we need 2" different sets),

2. r-d(n) < p (to fulfill the requirements of Lemma 1).

It is easy to verify that taking » = [22-] and p the first prime larger than r - d(n) fulfills
these two requirements.

The only thing remaining is to show that we can generate the ith set Q; in polynomial
time (in n). First we have to compute the prime number p. Since the length of the binary
representation of r - d(n) is in O(log(n)) and because there is a prime between r - d(n) and
2r - d(n), we can do a brute-force search (or do a more sophisticated sieve method [Pri83])
in polynomial time. Next we have to pick the ith polynomial over GF (p) (which can easily
be done in polynomial time) and compute Q;. Since p is a prime number, the operations in

G F (p) are simply multiplication and addition modulo p, which also can be done in polynomial
time. 0

logn
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Recall that the <?, reduction f from §=" to Ux,es Q; is defined by Ass(f(x;)) =
Q;. Since ||Qill = p < 2r -d(n) < (4nd(n)/logn), we have in fact shown that § €
Ro(md(n)/10gm—ct:(TALLY). As shown by Saluja [Sal93], this bound is optimal.

Note that if we consider probabilistic reductions, we can randomly choose exactly one
of the strings from Ass(f(x)) and get a many-one reduction with a one-sided error. This
observation is due to Schoning in [Sch93], where he shows that every sparse set many-one
reduces to a tally set by a polynomial-time, randomized procedure.

COROLLARY 1. R.,(SPARSE) = R.,(TALLY).

COROLLARY 2. co-SPARSE < Ry (TALLY).

Proof. If A is <%, -reducible to a tally set, then A is <[,,-reducible to a tally set. 0

The following theorem can be derived using Theorem 1. It refutes another of the conjec-
tures from [Ko89]. (The conjecture was that R4, (SPARSE) € R (SPARSE).)

THEOREM 2. Ry (SPARSE) C R, (TALLY).

Proof. Let A be </_,, -reducible to some sparse set S via f. Using Theorem 1 we get that
S is <%,-reducible to some tally set Ts via g. We will construct a tally set T and a reduction
h such that A <%, T via h. Define

T = {0 n; e Nand 3i : 0" € Ts}.

In the following it is convenient to view T as a Cartesian product. For Ay, ..., A tally sets,
let

AlX“-XAk———{O(n' """ nk)'OnEEA,'}.

Define the <, reduction 4 as follows: if f(x) = ({y1, ..., %), @), thenlet Ass(h(x)) =
Ass(g(y1)) x - -+ x Ass(g(yx)). Note that & is polynomial-time computable since both f and
g are. It remains to show that h reduces A conjunctively to 7.

xeA=3i:y; €8S

= 3i: Ass(g(y:)) € Ts

= Ass(g(y) x---x Ass(g(y)) & T.
x¢A=>Viy ¢S

= Vi30™" : 0" € Ass(g(y;)) and 0" ¢ Ts

= O(n, ..... n) ¢ T

= Ass(g(y)) x---x Ass(gy) ET. O

Theorem 1 offers a new understanding of the class R, (SPARSE) and as such, it has been
used in [AKM92] to prove various results.

To understand the relationship between sparse and tally sets, it is important to know which
reductions are able to differentiate between tally and sparse sets and which aren’t. It is well
known that R,,(SPARSE) = R, (TALLY) [HIS85] and our Corollary 1 gives the analog for
<’ reductions. On the other hand, there do exist reductions that are more powerful with
sparse oracles than with tally oracles. This holds, for instance, for many-one reductions and
for disjunctive truth-table reductions [Ko89].

As the next theorem shows, positive truth-table reductions on sparse and tally sets behave
like <7, reductions and not like </}, reductions.

THEOREM 3. R, (SPARSE) = R, (TALLY).

The result follows immediately from the following theorem, which claims that 52,, re-
ductions to tally sets capture the class R, (TALLY).
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THEOREM 4. R, (TALLY) = R, (TALLY).

Proof. Let A be a set in R, (TALLY) and suppose T is a tally set such that A <hT
by a t# function f that is computable in time p(n) where p is a polynomial. We have to
show that A € R, (TALLY). We define the tally set T’, which will witness the fact that

A € Ry, (TALLY), as follows:
T' = {0"910" e TYU{0™"] 0" ¢ T}.

We claim that A 5,’;,, T' by the following reduction.
On input x of length n do the following:

1. If there exists an m < p(n) such that 090" and 0!’ are both not in the oracle set,
then reject;

2. else, if there exists an m < p(n) such that 0% and 0"} are both in the oracle set,
then accept;

3. otherwise, simulate the old t1 function f on input x, replacing each query 0™ by 0™,

It is immediate that this reduction reduces A to 7', since by definition of 7’ we are always
in case 3, which implies that we just simulate f. It remains to show that the reduction is
positive. Suppose for a contradiction that it isn’t. Then there exist a string x of length n and
two oracle sets X C Y such that x is accepted with oracle X and rejected with oracle Y. Since
x is accepted with oracle X, we cannot be in case 1, that is, it must be the case that for all
m < p(n) either 0% € X or 0! € X. Now look at Y. If Y\ X does not contain strings of
the form 0! for m < p(n), i € {0, 1}, then f(x) with oracle ¥ behaves in exactly the same
way as f(x) with oracle X. In particular, x is accepted, which contradicts our assumption.
Therefore, suppose that for some m < p(n) and i € {0, 1} it is the case that 0¥ occurs in Y
but not in X. Then it must be the case that "1~ € X and therefore, since X C Y, both
00 and 0! are in Y. This implies that we are in case 2, and thus, x is accepted contrary
to the assumption. 0
Note that by the construction, it is immediate that 7" is 1-#¢ reducible to T.

4. Conjunctive and disjunctive reductions. Gavalda and Watanabe [GW93] showed

that R.,, (SPARSE) g Rg:: ( SPARSE). Combining this result with Theorem 1, we can quickly
derive the following theorem of Ko.

THEOREM 5 [K089]. Ry, (SPARSE) ¢ R.;;SPARSE).

Proof. Let A be a set in R, (SPARSE) that is not in Ry,(SPARSE). Consider the set
A. Since A € R.,(SPARSE) and R, (SPARSE) = R,,(TALLY) by Theorem 1, we have
that A € R, (TALLY). By simple complementation, it follows that A € Ry, (TALLY) and
therefore, A € Ry, (SPARSE). Now we see that A cannot be in R.,,(SPARSE). For suppose
A € R.,,(SPARSE). Then, again using Theorem 1, A € R.,,(TALLY),s0 A € Ry, (TALLY) C
R4 (SPARSE), contradicting our choice of A. a

Gavalda and Watanabe’s proof actually provides something stronger. They show that

Rf(xy-et(SPARSE) € Ry, ( SPARSE)

rany polynomial-time-computable unbounded function f. Ko’s proof of Theorem 5 does not
em to provide this generalization and the above proof does not generalize directly, because
en we go conjunctively from a sparse set to a tally set, we need a polynomial number of
ries. To be able to use the previous argument while keeping the number of queries small,
1eed a strengthening of Gavalda and Watanabe’s theorem to tally sets.

THEOREM 6. For any polynomial-time-computable unbounded function f,
-crt (TALLY) € Ry, (SPARSE).
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Proof. If we can prove the theorem for small functions f, it is immediately true for larger
functions, so we may assume f(n) < logn. For every n, let x,, be a Kolmogorov random
string of length n. Define

A= { (0", (i1, b1), ..., (i), br(y)) such that
l<ij<ip<---<lifpn <nand
for every j, the i;th bit of x, is b;}.

It is immediate that A -<-J€(n)-ctt T, where
T = {0""*)| the ith bit of x, is b} .

To show that A is not §5n-reducible to any sparse set, leading to a contradiction, assume
A< 5,, S, via reduction k, where h is n°-time computable and || S="|| < n°.

Let A, be the set of all strings of A of the form (07, ...). We will show that there is
a string y, in S that is queried by many strings from A, (Lemma 2). Suppose that a string
(0", (i1, b1), ..., {if(m), bremy)) queries the string y,. Since h is a 55” reduction fro A to §
and y, € S, this provides us with the f(n) bits iy, i2, ..., if() of x,. By a careful counting
argument, we show below that, for n large enough, we get enough bits of x, from y, to
contradict the randomness of x,,.

LEMMA 2. There exist a constant d and for every n a string yy in S such that

I{z € Anl yu € Ass(R()}] = nt/ @4,

fn)
Proof. The number of strings in A, is (f:'n)) > (f_?nj) . Thus, for f(n) < n?,

[Axll = n2/™ . For each string z in A,, there is a string in S N Ass(k(z)). Since strings in
A, are certainly of length less than 2n, the queried strings are of length at most (2n)¢. Thus,
there are at most ((2n)°)¢ = (’.Zn)Cz strings of S in U,c4,Ass(h(z)). There must be a string
v in the set that is in Ass(k(z)) for at least [|A,[l/(2n)¢" many z’s. Since ||A,|| > n1/®,
A ll/(2n)¢ > n2f ™= for a suitable d. [

Given aset ¥ C A,, let Iy be the set of indices i; that are mentioned in the strings
from Y.

LEMMA 3. Let Y C A,; then |Y| < | Iy ||/ ™.

Proof. Each string in Y mentions exactly f(n) bits of Iy. There are exactly (%ﬂ';) ways
to select f(n) bits from the set of indices Iy, so

!
Yy < (%‘D <™. o

LEMMA 4. There exists a string y, € S such that for the set Y of strings in A, that query
Yoo Iy = n=d/f,

Proof. Let y, be given by Lemma 2 and let ¥ be the set of strings z in A, such that y, €
Ass(h(z)). Then, by Lemma 3,

i
; “d
nafm=d <y, | f

Myl > n(%f(n)—d)/f(n) — n%‘d/f(")_

Now, to derive a contradiction, we show how to describe x, with fewer than n bits. To
describe x,,, use the string y, from Lemma 4. To compute y,, we need one of the strings
z € A, that query y,, and the index of y, in the set of queries. The string z can be described
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using O(f(n)logn) bits and the index can be described in O(logn) bits. It follows that
yn can be described using O(f(n)logn) bits. Given y,, we can compute all the bits of
x, that are mentioned in strings form the set Y of strings in A, that query y,. Now look
at the sequence containing all the bits of x, that are not mentioned by Y. This requires
n— |lIyll < n —n3=4/f® bits. Since the bits described by Y all contain their index, they
can be inserted into their respective position. The total number of bits needed to describe x,
is n — n2=4f" 4 O(f(n)logn), which is strictly less than n if f(n) is unbounded and <
logn. B

Now we can derive the wanted theorem.

THEOREM 7. For any polynomial-time-computable unbounded function f,
Rf(ny-d:(TALLY) € R.;(SPARSE).

Proof. Using Theorem 6, we can use the same reasoning as in the proof of Theorem 5.
Since we start from a tally set, we don’t have the problem associated with the blow up in
number of queries. 0

The following corollaries can all be obtained from Theorems 6 and 7.

COROLLARY 3. For any polynomial-time-computable unbounded function f, Rjn)-cu
(SPARSE) and R (ny-4::(SPARSE) are not closed under complementation.

COROLLARY 4. For any polynomial-time-computable unbounded function f, Ry(n)-ct:
(SPARSE) and R (ny-4::(SPARSE) are incomparable.

COROLLARY 5. For any polynomial-time-computable unbounded function f, Ry()-du
(SPARSE) and Ry (n)-c::(SPARSE) are strictly included in Ry (n)-(SPARSE).

These results hold for the corresponding R,(TALLY) classes as well. For bounded con-
junctive and disjunctive reductions to sparse sets, we get the following analog.

THEOREM 8. For all k > 1, Ry-c1;(SPARSE), Ry-4,(SPARSE), Rp4:(SPARSE), and
Ryt (SPARSE) are not closed under complementation, and therefore are strictly included
in Ry, (SPARSE).

Proof. Tt it not hard to see that if R4, (SPARSE) is closed under complementation,
then R;.,,(SPARSE) C R4, (SPARSE). By Theorem 2, it follows that R;-,,(SPARSE) <
R.:(SPARSE), contradicting [Ko89]. For the bounded conjunctive case we can argue in a
similar way:. ]

Note that this theorem does not hold for the corresponding R,(TALLY) classes. It follows
from [Ko89] that R,,(TALLY) = Ry-c;:(TALLY) = Ry-4:,(TALLY) = Ry, (TALLY), and thus
all these classes are closed under complementation.
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